The nucleus prepositus hypoglossi contributes to head direction cell stability in rats.
نویسندگان
چکیده
Head direction (HD) cells in the rat limbic system fire according to the animal's orientation independently of the animal's environmental location or behavior. These HD cells receive strong inputs from the vestibular system, among other areas, as evidenced by disruption of their directional firing after lesions or inactivation of vestibular inputs. Two brainstem nuclei, the supragenual nucleus (SGN) and nucleus prepositus hypoglossi (NPH), are known to project to the HD network and are thought to be possible relays of vestibular information. Previous work has shown that lesioning the SGN leads to a loss of spatial tuning in downstream HD cells, but the NPH has historically been defined as an oculomotor nuclei and therefore its role in contributing to the HD signal is less clear. Here, we investigated this role by recording HD cells in the anterior thalamus after either neurotoxic or electrolytic lesions of the NPH. There was a total loss of direction-specific firing in anterodorsal thalamus cells in animals with complete NPH lesions. However, many cells were identified that fired in bursts unrelated to the animals' directional heading and were similar to cells seen in previous studies that damaged vestibular-associated areas. Some animals with significant but incomplete lesions of the NPH had HD cells that were stable under normal conditions, but were unstable under conditions designed to minimize the use of external cues. These results support the hypothesis that the NPH, beyond its traditional oculomotor function, plays a critical role in conveying vestibular-related information to the HD circuit.
منابع مشابه
A Medullary Pressor Region
Electrical stimulation of fibers of passage through the fastigial nucleus increases arterial pressure. To identify nuclei that may project through the pressor region of the fastigial nucleus, we injected the retrograde tracer fast blue unilaterally at confirmed pressor sites in the nucleus. In seven rats, we found dense fluorescent labeling bilaterally in the external cuneate, lateral reticular...
متن کاملVestibular imbalance associated with a lesion in the nucleus prepositus hypoglossi area.
BACKGROUND The nucleus prepositus hypoglossi (NPH) is known to be a neural integrator of horizontal eye movements. Although the role of the human NPH is not well known, it may also function in postural balance, in view of its anatomic connections with the vestibular nuclei and vestibulocerebellum and of lesion studies in experimental animals. OBJECTIVE To show that the human NPH contributes t...
متن کاملNicotinic acetylcholine receptor-mediated responses in medial vestibular and prepositus hypoglossi nuclei neurons showing distinct neurotransmitter phenotypes.
Cholinergic transmission in both the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN) plays an important role in horizontal eye movements. We previously demonstrated that the current responses mediated via nicotinic acetylcholine receptors (nAChRs) were larger than those mediated via muscarinic acetylcholine receptors (mAChRs) in cholinergic MVN and PHN neurons that proje...
متن کاملNitric Oxide Production by Brain Stem Neurons Is Required for Normal Performance of Eye Movements in Alert Animals
Although nitric oxide (NO) is produced by discrete groups of neurons in the brain, participation of NO in premotor structures directly involved in reflexively evoked, sensory-motor functions has not been demonstrated so far. We now show that NO is a physiological mediator in the generation of a specific motor response in alert behaving animals. In the oculomotor system, numerous neurons express...
متن کاملThe nucleus prepositus predominantly outputs eye movement-related information during passive and active self-motion.
Maintaining a constant representation of our heading as we move through the world requires the accurate estimate of spatial orientation. As one turns (or is turned) toward a new heading, signals from the semicircular canals are relayed through the vestibular system to higher-order centers that encode head direction. To date, there is no direct electrophysiological evidence confirming the first ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 6 شماره
صفحات -
تاریخ انتشار 2015